
CODE3
Summer semester 2025
Prof. Dr.-Ing. Uwe Hahne

A trip down the 3D graphics pipeline

Prof. Uwe Hahne 2



Prof. Uwe Hahne 3

Get an overview of what happens during rendering.

Get to know the basic terms, typical hardware and standard APIs.

Learning goals: Lecture 01 (May 13th)



• Input à Command chain à Output
• Chain of command consists of several stages
• The steps must be executed sequentially for a single data element
• For a larger amount of data, each stage can be executed in parallel. 

executed in parallel

What is a pipeline?

Level 1 ... Level N ResultInput

Pipeline [microprocessors]: refers to a type of "assembly 
line" with which the processing of machine commands is 
broken down into subtasks that are executed in parallel 
for several commands. 

Definitions: www.wikipedia.de

Prof. Uwe Hahne 4

http://www.wikipedia.de/


• Input: 3D scene description (polygons, transformations, ...)
• Output: 2D image
• What are the levels / what is the chain of command?

What is a graphics pipeline?

Level 1 ... Level N 2D image3D scene

Prof. Uwe Hahne 5



Conceptual model of the graphics pipeline

Application Geometry Rasterization 2D image3D scene

Prof. Uwe Hahne 6



Conceptual model of the graphics pipeline

Application Geometry Rasterization 2D image

Application
(e.g. on the CPU)

Actual graphics pipeline
(e.g. on graphics chip / graphics card)

§ Sending data to
the pipeline;
updating

§ Simulation
§ Interaction

§ Vertex
Transformation

§ Tessellation,
Subdivision into 
triangles or 
similar.

§ Clipping

§ Scan Conversion
à Fragments

§ Fragment Process.
(Per-Pixel Lighting, 
Post Processing, 
sprites, ...)

§ Compositing

3D scene

§ Primitive
§ Vertices
§ Textures
§ Constants

§ Color
§ Alpha
§ Depth
§ ...

Prof. Uwe Hahne 7



Classic graphics pipeline

• Functionality was hard-wired (fixed function pipeline)
• Configuration through many model parameters

• Modelview matrix
• Projection matrix
• Light and material properties 
• Texturing modes
• Alpha blending modes
• Fog modes
• ...

glMatrixMode(GL_MODELVIEW);
glMultMatrix(...);  

glFog(GL_FOG_MODE, GL_EXP);
glFog(GL_FOG_COLOR, {1,1,1} );

glAlphaFunc(GL_GREATER, 0.2);

glLight(GL_LIGHT0, GL_POSITION, {5,4,-1,1} );
glLight(GL_LIGHT0, GL_DIFFUSE, {1,1,1} );

Per-Vertex Lighting

Projection

Clipping

Rasterization

Texturing

Model-View-Transform

Blend & Merge

Application / Client

Geometry
Rasterization

Geometry

Rasterization

Prof. Uwe Hahne 8



From the classic to the programmable pipeline

Programmable shaders
• Since OpenGL 2.0 / DirectX 8.0 (2004/2000)
• Replace parts of the fixed function pipeline
• Pipeline becomes more flexible

• Other lighting models
• Other uses of textures and alpha blending
• Realize effects directly in the pipeline using 

shaders

Fixed Function

Programmable

Primitive Assembly

Clipping 

Rasterization

Fragment Shader

Blend & Merge

Per-Vertex Lighting

Projection

Clipping

Rasterization

Texturing

Model-View-Transform

Blend & Merge

Application / Client

Geometry

Rasterization

// this is a shader executed in the pipeline 
void main() {
  outPos = modelViewMatrix * inPos;
  normal = normalMatrix * inNormal;
  outColor = phong(outPos,normal);
  outPos = projectionMatrix * outPos;
}

Vertex Shader

Prof. Uwe Hahne 9



1981 - 200x: Silicon Graphics (SGI) graphics workstations
• 1987 SGI "4D" series à most popular computer for animation
• 1992 MIPS R4000, use of one of the first 64-bit processors

1996: 3DFX Vodoo, first PC graphics card
1999: Transform & Lighting (T&L) Unit 

• NVIDIA Geforce 256 "the world's first GPU"; 
Pipeline on a single chip

2001: GeForce 3: First fixed-length Vertex Programs
2006-2011: Hardware tessellation

• Distribution through DirectX 11 and OpenGL 4.1
2011-2013: Compute Shaders

• For general, massively parallel calculations
2014: New proprietary low-level APIs

• AMD Mantle, NVIDIA Cuda

• Apple Metal

• Design goal: less "ballast" than OpenGL / DirectX
• DirectX 12 and Vulkan: similar design goals

From graphics computers to programmable GPUs

SGI RM11 Raster Manager with 
1 GB onboard memory

SGI Onyx high-performance computer
supported multiprocessors and

several InfiniteReality graphics pipes

15 million triangles/sec.
480 million pixels/sec. 

100,000 million vertices/sec. *
40,000 million pixels/sec. 

1999

2010

NVidia GeForce3 Ti 200 GPU
* See this side node about GPU performance measures

Prof. Uwe Hahne 10

https://community.arm.com/arm-community-blogs/b/graphics-gaming-and-vr-blog/posts/triangles-per-second-performance-metric-or-chocolate-teapot


Graphics hardware

Prof. Uwe Hahne 11

From https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/ 



Inside view of a computer

Prof. Uwe Hahne 12



Inside view of a computer

Find the CPU!
(central processing unit)

Prof. Uwe Hahne

This image is licensed under CC-BY 2.0

13

https://creativecommons.org/licenses/by/2.0/deed.en


Inside view of a computer

Find the GPUs!
(graphics processing unit)

Prof. Uwe Hahne

This image is licensed under CC-BY 2.0

14

https://creativecommons.org/licenses/by/2.0/deed.en


CPU vs GPU

Cores Clock 
Speed

Memory Price Speed (throughput)

CPU
(Intel Core 
i9-7900k)

10 4.3
GHz

System 
RAM

$385 ~640 GFLOPS FP32

GPU 
(NVIDIA 
RTX 3090)

10496 1.6
GHz

24 GB 
GDDR6X

$1499 ~35.6 TFLOPS FP32

CPU: Fewer cores, but 
each core is much 
faster and more 
powerful; ideal for 
sequential tasks

GPU: More cores, but 
each core is much 
slower and "dumber"; 
ideal for parallel tasks

Prof. Uwe Hahne 15



A graphics pipeline (anno 2004) in hardware
NV

idi
a 

Ge
Fo

rce
 6

 g
ra

ph
ics

 ca
rd

 (2
00

4)

Same program, massively parallel
for many framebuffer elements

Same program, massively parallel
for many fragments

Fragments are assigned to pixels

Input: Application describes 3D scene

Same program, massively parallel
for many vertices

Triangles / lines are rasterized 
(converted into pixel fragments)

Output: 2D image in the frame buffer of the graphics 
card

Image source: GPU Gems 2 (2005), ftp://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf 

Vertex
Processing

Z-Test
and 

Blend

Texture
and 

Fragment
Processing

Prof. Uwe Hahne 16



Same program, massively parallel
for many framebuffer elements

Graphics pipeline: SIMD = Single Instruction, Multiple Data
NV

idi
a 

Ge
Fo

rce
 6

 g
ra

ph
ics

 ca
rd

 (2
00

4)

Same program, massively parallel
for many fragments

Same program, massively parallel
for many vertices

Image source: GPU Gems 2 (2005), ftp://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch30.pdf 

Vertex
Processing

Z-Test
and 

Blend

Texture
and 

Fragment
Processing

SIMD = Single Instruction, Multiple Data

Prof. Uwe Hahne 17



Example: NVIDIA Jetson TX2 mobile chipset (2017)

72 shader cores run in parallel

TX2 NX

Technical data of the graphics processor

NVIDIA Pascal™ (number of computing units) 256

Technical data of the memory *:

Standard memory configuration 4 x 4 GB LPDDR

Speed 51.2 GB/s 

Power consumption 7.5 / 15 watts
* Shared CPU+GPU memory

Prof. Uwe Hahne 18



Example high-end GPU: NVIDIA RTX 3080 Ti (2021) 

GeForce RTX 3080 Ti

Technical data of the graphics processor

NVIDIA CUDA computing units® 10.240

Boost clock (GHz) 1,67

Base clock rate (GHz) 1,37

Technical data of the memory:

Standard memory configuration 12 GB GDDR6X

Width of the memory interface 384 bit

Speed 76 - 84 GB/s *

Power consumption 350 watts

10,000+ shader cores running in 
parallel!

* Approximation from Wikipedia

Prof. Uwe Hahne 19

https://de.wikipedia.org/wiki/Graphics_Double_Data_Rate


Example high-end GPU: NVIDIA Titan RTX (2021) 

Titan RTX

Technical data of the graphics processor

NVIDIA CUDA computing units® 4608 + 576 Tensor Cores + 72 RT Cores

Boost clock (GHz) 1,77

Base clock rate (GHz) 1,35

Technical data of the memory:

Standard memory configuration 24 GB GDDR6X

Width of the memory interface 384 bit

Speed 672 GB/s

Power consumption 280 watts *

Different specialized cores!

* Thermal design power

Prof. Uwe Hahne 20

https://www.nvidia.com/en-us/data-center/tensor-cores/
https://en.wikipedia.org/wiki/Thermal_design_power


Task

Take your laptop or smartphone and find out 
which CPU and GPU are installed in it.

Prof. Uwe Hahne 21

Without unscrewing ;)



Standard low level APIs for 3D graphics

for the browserfor mobile devices

Subset 
from

Subset 
from

more identical
Range of functions

equivalent

All APIs are essentially 

based 

on the same pipeline.

Prof. Uwe Hahne 22



Complete OpenGL 4.6 pipeline (2017)

23

Source: http://www.khronos.org/files/opengl46-quick-reference-card.pdf 

Prof. Uwe Hahne

http://www.khronos.org/files/opengl46-quick-reference-card.pdf


The core of the OpenGL pipeline

24

Source: http://www.khronos.org/files/opengl43-quick-reference-card.pdf 

Prof. Uwe Hahne

http://www.khronos.org/files/opengl43-quick-reference-card.pdf


DirectX 11 vs. OpenGL 4 Pipeline

25

The two pipelines are very similar, except for 
terminology

• "Input Assembler" = "Vertex Pulling"
• "Hull Shader" = "Tesselation Control Shader"
• ...

The simple reason for this:
• Both standards are developed for the latest

graphics hardware
• Differences are usually only temporary until

one standard has caught up with the other

Stream Output

Sources: Microsoft, Khronos Group

Prof. Uwe Hahne



OpenGL vs Vulkan

26

Source: Khronos Group

Prof. Uwe Hahne



About Vulkan 

"Vulkan is not well-suited to simple test applications; neither is it a 
suitable aid for teaching graphics concepts."
— Graham Sellers, in the book "Vulkan Programming Guide"

27



The (simplified) pipeline model of OpenGL 

Hardwired functions
Programmable through shaders
Data

API / 
Client

Vertex Arrays /
Buffer Objects

Vertex shading

Primitive Assembly

Clipping

Rasterization

Fragment shading

Framebuffer Ops

Vertex Assembly

Tessellation shading

Geometry Shading

Uniform Data
& Textures

Transform 
Feedback Geometry

Rasterization

28



The (simplified) pipeline model of OpenGL 

Hardwired functions
Programmable through shaders
Data

API / 
Client

Vertex Arrays /
Buffer Objects

Vertex shading

Primitive Assembly

Clipping

Rasterization

Fragment shading

Framebuffer Ops

Vertex Assembly

Tessellation shading

Geometry Shading

Uniform Data
& Textures

Transform 
Feedback Geometry

Rasterization

Not included in OpenGL ES 2.0
/ WebGL 1.0 included

29



Standard low level APIs for 3D graphics

for the browserfor mobile devices

Subset 
from

Subset 
from

more identical
Range of functions

equivalent

OpenGL ES 2.0 ↔ WebGL 1.0
OpenGL ES 3.0 ↔ WebGL 2.0 

Prof. Uwe Hahne 30



Prof. Uwe Hahne 31

Did you get an overview of what happens during rendering?

- Write all the basic terms, typical hardware and standard APIs that you can remember on
a card (5 min).

- Find a partner and explain the terms to each other. Collect all the cards that you could
not explain (well enough) and send the open questions to your instructor.

Task: Check learning objective


	Blank Page



